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MULTIPLE-RELAXATION-TIME LATTICE BOLTZMANN MODELS IN 3D

DOMINIQUE D'HUMI�ERES�, IRINA GINZBURGy, MANFRED KRAFCZYKz, PIERRE LALLEMANDx, AND

LI-SHI LUO{

Abstract. This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann

equation, with examples of �fteen-velocity and nineteen-velocity models in three dimensions. Simulation of a

diagonally lid-driven cavity 
ow in three dimensions at Re = 500 and 2000 is performed. The results clearly

demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over

the popular lattice Bhatnagar-Gross-Krook equation.

Key words. multiple-relaxation-time LBE in 3D, D3Q15 and D3Q19 models, 3D diagonal lid driven

cavity 
ow

Subject classi�cation. Fluid Mechanics

1. Introduction. The relaxation lattice Boltzmann equation (RLBE) was introduced by Higuera and

Jim�enez [20] to overcome some drawbacks of lattice gas automata (LGA) such as large statistical noise, limited

range of physical parameters, non-Galilean invariance, and implementation di�culty in three dimensions. In

the original RLBE the equilibria and the relaxation matrix were derived from the underlying LGA models. It

was soon realized that the connection to the LGA model could be abandoned and the equilibria and collision

matrices could be constructed independently to better suit numerics [21].

The simplest lattice Boltzmann equation (LBE) is the lattice Bhatnagar-Gross-Krook (BGK) equation,

based on a single-relaxation-time approximation [1]. Due to its extreme simplicity, the lattice BGK (LBGK)

equation [29, 4] has become the most popular lattice Boltzmann model in spite of its well known de�ciencies.

The multiple-relaxation-time (MRT) lattice Boltzmann equation was also developed at the same time [7].

The MRT lattice Boltzmann equation (also referred to as the generalized lattice Boltzmann equation (GLBE)

or the moment method) overcomes some obvious defects of the LBGK model, such as �xed Prandtl number

(Pr = 1 for the BGK model) and �xed ratio between the kinematic and bulk viscosities. The MRT lattice

Boltzmann equation has been persistently pursued, and much progress has been made. Successes include:

formulation of optimal boundary conditions [10, 22], interface conditions in multi-phase 
ows [11] and free

surfaces [12], thermal [26] and viscoelastic models [13, 14], models with reduced lattice symmetries [8, 2],

and improvement of numerical stability [23]. It should be stressed that most of the above results cannot be

obtained with the LBGK models. Applying optimization techniques in coding, the computational e�ciency

of the RLBE method [7] can be fairly close to that of the LBGK method for most practical applications
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(RLBE schemes could be ca. 15% slower than their LBGK counterparts in terms of the number of sites

updated per second). Recently it was shown that the multiple-relaxation-time LBE models are much more

stable than their LBGK counterparts (Lallemand & Luo 2000), because the di�erent relaxation times can

be individually tuned to achieve `optimal' stability.

In this paper we intend to bring attention to the multiple-relaxation-time LBE by demonstrating its

superior stability to LBGK models. This paper is organized as follows. Section 2 brie
y outlines the basic

theory of the multiple-relaxation-time LBE. Section 3 provides as a `template' example: a �fteen-velocity

RLBE model in three dimensions (D3Q15 model). Section 4 gives some results for a three-dimensional

cavity 
ow simulated by using both RLBE and LBGK methods. Finally, section 5 concludes the paper. The

appendix brie
y describes the nineteen-velocity model in three dimensions (D3Q19 model).

2. Multiple-relaxation-time lattice Boltzmann equation. Although it can be shown that the

lattice Boltzmann equation is a �nite di�erence form of the linearized continuous Boltzmann equation [17, 18],

we present RLBE as a self-contained mathematical object representing a dynamical system with a �nite

number of moments in discrete space and time.

The general RLBE model has three components. The �rst component is discrete phase space de�ned

by a regular lattice in D dimensions together with a set of judiciously chosen discrete velocities fe�j� =

0; 1; : : : ; Ng connecting each lattice site to some of its neighbours. The fundamental object in the theory is

the set of velocity distribution functions ff�j� = 0; 1; : : : ; Ng de�ned on each node ri of the lattice. The

second component includes a collision matrix S and (N + 1) equilibrium distribution functions ff (eq)� j� =

0; 1; : : : ; Ng. The equilibrium distribution functions are functions of the local conserved quantities. The

third component is the evolution equation in discrete time tn = n�t, n = 0, 1, . . . ,

jf(ri + e��t; t+ �t)i � jf(ri; t)i = �S
h
jf(ri; t)i � jf (eq)(ri; t)i

i
: (2.1)

In the above equation we have used the following notations for column vectors in (N +1)-dimensional space

V = R
N+1 ,

jf(ri; t)i � (f0(ri; t); f1(ri; t); : : : ; fN (ri; t))
T;

jf (eq)(ri; t)i � (f
(eq)
0 (ri; t); f

(eq)
1 (ri; t); : : : ; f

(eq)
N (ri; t))

T; and

jf(ri + e��t; t+ �t)i � (f0(ri; t+ �t); : : : ; fN(ri + eN�t; t+ �t))T;

where T denotes the transpose operator and we always assume that e0 � 0. From here on the Dirac

notations of bra h�j and ket j�i vectors are used to denote respectively the row and column vectors. Note

that equation (2.1) is written in such a way that its right- and left-hand-sides represent the two elementary

steps in the evolution of the lattice Boltzmann equation: advection and collision. The advection process is

naturally executed in velocity space V, f�(ri; t) being simply shifted in space according to the velocity e� to

f�(ri+e��t; t+�t). The collision process is naturally accomplished in the space spanned by the eigenvectors

of the collision matrix, the corresponding eigenvalues being the inverse of their relaxation time towards their

equilibria. The (N + 1) eigenvalues of S are all between 0 and 2 so as to maintain linear stability and the

separation of scales, which means that the relaxation times of non-conserved quantities are much faster than

the hydrodynamic time scales. The LBGK models are special cases in which the (N + 1) relaxation times

are all equal, and the collision matrix S = !I, where I is the identity matrix, ! = 1=� , and � (> 1=2) is the

single relaxation time of the model.

To simulate athermal 
uids, a necessary criterion is that the discrete velocity set must be su�cient to

represent a scalar (mass density �), a vector (momentum j), another scalar (pressure P ), and a symmetric
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traceless second rank tensor (viscous stress tensor �ij). More generally, the velocity set must possess su�cient

symmetries for the hydrodynamic equations to hold: the conserved quantities and their 
uxes must transform

properly so that they can approximate their continuous counterparts in an appropriate limit. Finally the

local conserved quantities must be the mass density � and the momentum j for athermal 
uids.

Given a chosen set of discrete velocities fe�j� = 0; 1; : : : ; Ng and corresponding distribution functions

ff�j� = 0; 1; : : : ; Ng, an equal number of moments fm� j� = 0; 1; : : : ; Ng of the distribution functions f�

can be obtained as

m� � h�� jfi = hf j��i; hf j = (f0; f1; : : : ; fN); (2.2)

where fj��ij� = 0; 1; : : : ; Ng is an orthogonal dual basis set constructed by the Gram-Schmidt orthogonal-

ization procedure (e.g. Bouzidi et al. 2001a) from polynomials of the column vectors jexi
i in space V. Vector

jexi
i is built from the components of the e�'s, i.e. jexi

i � (e0 xi
; e1xi

; : : : ; eN xi
)T, for i 2 f1; 2; : : : ; Dg in

D dimensions (e.g., fjexi; jeyi; jezig in three dimensions).

The set fj��ig is analogous to the Hermite tensor polynomials in continuous velocity space [15, 16].

It should be stressed that the orthogonal functions de�ned on a �nite set of discrete velocities fe�g has

some degeneracies which do not exist in the Hermite tensor polynomials in continuous space. Obviously,

the moments are simply linear combinations of the f�'s, therefore velocity space V, spanned by jfi �
(f0; f1; : : : ; fN )

T, and the moment space M , spanned by jmi � (m0; m1; : : : ; mN )
T, are related by a

linear mapping M: jmi = Mjfi and jfi = M�1jmi. The transformation matrix M would be an orthogonal

transformation if the basis vectors fj��ig are normalized.
If the matrix S is chosen such that the fj��ig are its eigenvectors, the linear relaxation of the kinetic

modes in moment space M naturally accomplishes the collision process. Then the evolution equation (2.1)

of the multiple-relaxation-time lattice Boltzmann equation becomes [7, 23]:

jf(ri + e��t; t+ �t)i � jf(ri; t)i = �M�1bS h jm(ri; t)i � jm(eq)(ri; t)i
i
; (2.3)

where the collision matrix bS = M �S �M�1 is diagonal: bS � diag(s0; s1; : : : ; sN ), and m
(eq)
� is the equilibrium

value of the moment m�. The (N + 1) moments can be separated into two groups: the `hydrodynamic'

(conserved) moments and the `kinetic' (non-conserved) moments. The �rst group consists of the moments

locally conserved in the collision process, so that in general m
(eq)
� = m�. The second group consists of the

moments not conserved in the collision process so that m
(eq)
� 6= m� . The equilibria fm(eq)

� g are functions

of the conserved moments and are invariant under the symmetry group of the underlying lattice. For

models designed to simulate athermal 
uids, the only hydrodynamic moments are mass density � (a scalar)

and momentum j (a vector): energy is not a conserved quantity for athermal 
uids. Equilibrium values of

kinetic moments are functions of � and kjk2 for scalars, and j times some functions of � and kjk2 (eventually
a constant) for vectors, and so on, as discussed in x3.

From the above de�nition of the conserved and non-conserved moments, Eq. (2.3) can be rewritten as

jf(ri + e��t; t+ �t)i � jf(ri; t)i = �
X

�2B(K)

s�
h�� j��i [(m�(ri; t)�m

(eq)
� (ri; t))] j��i; (2.4)

where we have used the fact that (M �MT) is a diagonal matrix with diagonal elements h�� j��i. It is obvious
that the actual values of the s� 's for conserved moments are irrelevant, because m

(eq)
� (ri; t) = m�(ri; t) for

� 2 B(H) by de�nition, but they are set to zero in general in what follows. Note that this point is purely

academic in the present context, but is very important when including body forces, as shown by Ginzbourg

and Adler [10].
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The RLBE formulation has two important consequences. First, one has the maximum number of ad-

justable relaxation times, one for each class of kinetic modes invariant under the symmetry group of the

underlying lattice. Second, one has maximum freedom in the construction of the equilibrium functions of

the non-conserved moments. One immediate result of using the RLBE instead of the LBGK model is a

signi�cant improvement in numerical stability [23]. It should be emphasized that the above procedures are

general and are independent of the number of discrete velocities and the number of space dimensions.

3. Multiple-relaxation-time D3Q15 model. Each point on a unit cubic lattice space has six nearest

neighbours, (�1; 0; 0), (0; �1; 0), and (0; 0; �1), twelve next nearest neighbours, (�1; �1; 0), (�1; 0; �1),
and (0; �1; �1), and eight third nearest neighbours, (�1; �1; �1). Elementary discrete velocity sets for

lattice Boltzmann models in three dimensions are constructed from the set of twenty-six vectors pointing

from the origin to the above neighbours and the zero vector (0; 0; 0). The twenty-seven velocities are usually

grouped into four subsets labelled by their squared modulus, 0, 1, 2, and 3. We also use the notation DdQq

for the q-velocity model in d-dimensional space in what follows [29]. The D3Q15 model uses the velocity

subsets 0, 1, and 3 and is described here as an example. The D3Q19 model uses the subsets 0, 1, and 2 and

is described in the appendix. The D3Q13 model introduced by d'Humi�eres et al. [8] only uses the subsets 0

and 2.

The �fteen discrete velocities in the D3Q15 model are

e� =

8><>:
(0; 0; 0); � = 0;

(�1; 0; 0); (0; �1; 0); (0; 0; �1); � = 1; 2; : : : ; 6;

(�1; �1; �1); � = 7; 8; : : : ; 14:

(3.1)

The components of the corresponding �fteen orthogonal basis vectors j��i� are given by:

j�0i� = ke�k0;
j�1i� = ke�k2 � 2;

j�2i� = 1
2 (15ke�k4 � 55ke�k2 + 32);

9>=>; (3.2a)

j�3i� = e�x;

j�5i� = e�y;

j�7i� = e�z;

9>=>; (3.2b)

j�4i� = 1
2 (5ke�k2 � 13)e�x;

j�6i� = 1
2 (5ke�k2 � 13)e�y;

j�8i� = 1
2 (5ke�k2 � 13)e�z;

9>=>; (3.2c)

j�9i� = 3e2�x � ke�k2;
j�10i� = e2�y � e2�z;

)
(3.2d)

j�11i� = e�xe�y;

j�12i� = e�ye�z;

j�13i� = e�xe�z;

9>=>; (3.2e)

j�14i� = e�xe�ye�z; (3.2f)

where � 2 f0; 1; : : : ; 14g, ke�k = (e2�x + e2�y + e2�z)
1=2 and ke0k0 = 1. The orthogonal basis set fj��ig

is obtained by orthogonalizing the polynomials of the column vectors jexi
i by the standard Gram-Schmidt

procedure (e.g. [2])). The corresponding �fteen moments fm� j� = 0; 1; : : : ; 14g are: the mass density

(m0 = �), the part of the kinetic energy independent of the density (m1 = e), the part of the kinetic energy
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square independent of the density and kinetic energy (m2 = � = e2), the momentum (m3;5;7 = jx;y;z), the

energy 
ux independent of the mass 
ux (m4;6;8 = qx;y;z), the symmetric traceless viscous stress tensor

(m9 = 3pxx, m10 = pww = pyy � pzz, with pxx + pyy + pzz = 0, m11;12;13 = pxy;yz;zx), and an antisymmetric

third-order moment (m14 = mxyz), corresponding to the following order:

jmi = (�; e; �; jx; qx; jy; qy; jz; qz; 3pxx; pww; pxy; pyz; pzx; mxyz)
T:

The collision matrix bS in moment space M is the diagonal matrix

bS � diag(0; s1; s2; 0; s4; 0; s4; 0; s4; s9; s9; s11; s11; s11; s14); (3.3)

zeros corresponding to conserved moments in the order chosen. And the matrix M is then given by

M =

�������������������������������������

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�2 �1 �1 �1 �1 �1 �1 1 1 1 1 1 1 1 1

16 �4 �4 �4 �4 �4 �4 1 1 1 1 1 1 1 1

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1
0 �4 4 0 0 0 0 1 �1 1 �1 1 �1 1 �1
0 0 0 1 �1 0 0 1 1 �1 �1 1 1 �1 �1
0 0 0 �4 4 0 0 1 1 �1 �1 1 1 �1 �1
0 0 0 0 0 1 �1 1 1 1 1 �1 �1 �1 �1
0 0 0 0 0 �4 4 1 1 1 1 �1 �1 �1 �1
0 2 2 �1 �1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 1 1 �1 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 �1 �1 1 1 �1 �1 1

0 0 0 0 0 0 0 1 1 �1 �1 �1 �1 1 1

0 0 0 0 0 0 0 1 �1 1 �1 �1 1 �1 1

0 0 0 0 0 0 0 1 �1 �1 1 �1 1 1 �1

�������������������������������������

: (3.4)

Note that the row vectors of M, fh�� jg, are orthogonal to each other but they are not normalized, i.e.

h��j��i = k��k � k��k � ��� . Note also that, with di�erent ordering and normalization, the basis vectors

fj�kig given by Ginzburg [9] are the same as the ones given here, except j�1i and j�2i which are replaced by

an orthogonal linear combination. This would make a di�erence only when s1 6= s2. The 4th, 6th, and 8th

row vectors of M (corresponding to jx, jy, and jz, respectively) uniquely de�ne the ordering (or labelling)

of the velocity set fe�g in subscript �.

With c2s = 1=3 (cs is the sound speed) and s9 = s11, the equilibria of the kinetic moments as functions

of �(eq) = � and j(eq) = j up to second-order are given by

e(eq) = ��+ 1

�0
j � j = ��+ 1

�0
(j2x + j2y + j2z ); (3.5a)

�(eq) = ��; (3.5b)

q(eq)x = �7

3
jx; q(eq)y = �7

3
jy; q(eq)z = �7

3
jz ; (3.5c)

p(eq)xx =
1

3�0

�
2j2x � (j2y + j2z )

�
; p(eq)ww =

1

�0

�
j2y � j2z

�
; (3.5d)

p(eq)xy =
1

�0
jxjy; p(eq)yz =

1

�0
jyjz; p(eq)xz =

1

�0
jxjz ; (3.5e)

m(eq)
xyz = 0: (3.5f)
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The constants are de�ned as follows. The constant �0 is the mean density in the system and is usually

set to be unity in simulations. The approximation of 1=� � 1=�0 is used in equations (3.5a), (3.5d), and

(3.5e) to reduce compressibility e�ects in the model (He & Luo 1997c). If the usual compressible Navier-

Stokes equations are required, one only has to replace �0 by �. Equation (3.5b) has the general form

�(eq) = w� � + w�j j � j=�0, where w� and w�j are free parameters which do not have much e�ect on the

asymptotic Navier-Stokes equation simulated by the model. In this model, we set w� = �1 and w�j = 0; to

recover the LBGK model, one must set w� = 1 and w�j = �5.
The above equilibrium functions are obtained by optimizing the isotropy and Galilean invariance of the

model. The details are described in [23]. The kinematic viscosity � and the bulk viscosity � of the model are

� =
1

3

�
1

s9
� 1

2

�
=

1

3

�
1

s11
� 1

2

�
; (3.6a)

� =
(5� 9c2s)

9

�
1

s1
� 1

2

�
=

2

9

�
1

s1
� 1

2

�
: (3.6b)

We emphasize that the above formulae are obtained under the conditions that s9 = s11 and q(eq) of equa-

tion (3.5c), which are the results of the optimization, and the mean 
uid velocity V = 0. Corrections to

these transport coe�cients for �nite k and non-zero mean velocity V can be calculated from the solution of

the linearized dispersion equation of the system, which is equivalent to the standard von Neumann stability

analysis [23].

Some properties of the lattice Boltzmann equation are dictated by the symmetries of the discrete velocity

set and the simplicity of the dynamics on the lattice. One consequence is the existence of spurious invariants

that may lead to some undesirable artifacts in simulations, especially near boundaries. One such invariant is

the staggered invariant in LGA and LBE models [30]. The D3Q15 model has also another special invariant

not found in most LBE models: the parity �(ri) of a vector ri = (xi; yi; zi) de�ned on a three-dimensional

cubic lattice by

�(ri) = (xi + yi + zi) (mod 2); for ri 2 Z3: (3.7)

For the D3Q15 model, if �(ri) is 0 (ri 2 Z
3
e), then �(ri + e�) is 1 (ri 2 Z

3
o) for e� 6= 0, and vice versa.

This means that the system has two decoupled sub-lattices (Z3
o and Z

3
e) for momentum, and these two sub-

lattices can be coupled through boundary conditions. Consequently the system has a chequerboard (parity)

invariance and one should be aware of this fact when using the D3Q15 models, especially when short-wave-

length oscillations are observed in simulations. The oscillations due to the checkerboard invariance often

causes numerical instability in simulations. In contrast, the D3Q19 model with velocities of parities 0 and 1

does not have this checkerboard invariance.

4. Simulations. In order to demonstrate the enhanced stability of the RLBE approach, we simulated

a diagonally lid-driven cavity 
ow [28] with a 
ow con�guration shown in �gure 1. The mesh is uniform and

of size 523. The boundary condition (BC) at the top plane (at y = 1) is UBC = �(p2; 0; p2)=20, so that

UBC = kUBCk = 0:1 in lattice units. The other �ve planes were subject to no-slip boundary conditions.

The relaxation parameters used in the RLBE simulations are �0 = 1, s1 = 1:6, s2 = 1:2, s4 = 1:6, and

s14 = 1:2. The values of the relaxation parameters (s�) and the adjustable parameters in �(eq) (w� and w�j)

have been obtained to attain optimal numerical stability but can only be regarded as `sub-optimal' values

which are the result of a compromise between the expected range for the Reynolds number and the e�ort

required to �nd the optimal values by searching a large parameter space through linear analysis. These
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Fig. 1. Diagonally driven cavity 
ow

parameters are not adjusted to the actual Reynolds number in each simulation, but are kept constant once

chosen. The relaxation parameters s9 = s11 are determined by the viscosity from equation (3.6a). The

accuracy of the simulation is also enhanced by using, instead of the variable �, its 
uctuations �� � �� �0.

The boundary conditions on the top plane are obtained in velocity space by assigning ff�g to [22]

f� = w��0
e� �UBC

c2s
; (4.1)

where w� = 1=9 for � 2 f1; : : : ; 6g and w� = 1=72 for � 2 f7; : : : ; 14g. It should be stressed that this

particular implementation of a sliding boundary imposes a constant pressure p0 = c2s�0 at the boundary,

which is incorrect; and the momentum transfer in the direction perpendicular to the moving lid is signi�cantly

weakened. The correct boundary conditions consistent with the bounce-back boundary conditions should be

[24, 25, 3]:

f�� = f� + 2w��0
e�� �UBC

c2s
= f� � 2w��0

e� �UBC

c2s
; (4.2)

where f�� is the distribution function of �e� � �e�. Nevertheless, the implementation prescribed by equation

(4.1) does help to enhance the stability of the D3Q15 model. The `node' bounce-back boundary conditions

are applied to the rest �ve walls for no-slip boundary conditions [6]. The `node' bounce-back boundary

conditions di�er from the `link' bounce-back boundary conditions by a one-step delay in time but otherwise

they are the same. This one-time-step delay seems to e�ectively reduce oscillations caused by the parity

invariance and thus enhances the numerical stability [5].

As the e�ective width of the system is approximately 50 lattice units, the Reynolds number Re =

50UBC=� was set by varying the viscosity �. We computed the lower bounds of the viscosity for this

particular 
ow by using the RLBE and LBGK schemes. The lower bounds are 0:6 � 10�3 for RLBE scheme

and 2:5 �10�3 for LBGK scheme with the identical discretization, initial and boundary conditions. Viscosities

smaller than these bounds would lead to numerical instability in the simulation. Hence for our test problem

with the same mesh size, the maximum Reynolds number attainable by using the RLBE scheme is about

four-times that attainable using the LBGK scheme.

For the Povitsky cavity 
ow [28] at a low Reynolds number Re = 500 (viscosity � = 0:01), the pressure

�eld computed by the LBGK scheme shows severe oscillations throughout the entire computational domain,

even in locations far away from the corner singularities, in contrast to the much smoother pressure �eld

obtained by using the RLBE scheme, as depicted in �gure 2.

When the Reynolds number is increased to 2000, the solution obtained by using the RLBE scheme

agrees reasonably well with that obtained by using the commercial software FLUENT with a non-uniform

683 mesh [28], as shown in �gure 3, even though the RLBE grid resolution is much coarser. At a relatively
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Fig. 2. Cavity 
ow Re = 500 pressure contours at z = 0:5: l) RLBE, r) LBGK

high grid Reynolds number Re� � U=� = 40, the pressure �eld still bears useful information, at least at

some distance from the top corner singularities, as shown in �gure 4. In contrast, the LBGK simulation

at Re = 2000 did not converge due to severe oscillations. With further increase of the Reynolds number

to 4000 (� = 0:00125), the 
ow �eld becomes unsteady and complex three dimensional vortex shedding are

observed. Detailed analysis of the 
ow will be published elsewhere.

Fig. 3. Cavity 
ow Re = 2000 stream lines at y = 0:5: l) RLBE 523 uniform grids, r) FLUENT 1013 non-uniform grids.

In the simulations, suitable coding techniques should be applied to optimize the computational e�ciency

of the code. First and foremost, one should not use matrix calculations in the transformations between space

V and space M , instead, the transformations should be carried out explicitly using the formulae mapping jfi
to jmi and vice versa (equations (2.2) and (2.4)). Secondly, the equilibria must be computed in moment space

M and not in velocity space V: this is the reason why we do not provide the equilibrium distribution functions

f
(eq)
� . Thirdly, all the common sub-expressions should be computed only once. This can be achieved either

by explicitly computing these sub-expressions as separate variables or by carefully putting them between

8



parentheses and trusting modern compilers to do themselves the sub-expression reduction. Various compiler

optimization options can easily accomplish this. Finally the use of �0 = 1 instead of � avoids the need of a

division in the calculations of the equilibria, and the use of �� instead of � to increase numerical accuracy.
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Fig. 4. Cavity 
ow Re = 2000 pressure contours at z = 0:5, RLBE 523 uniform grids

By following these basic practices based on common sense, the number of operations required for the sim-

ulation of the multiple-relaxation-time D3Q15 model can be reduced to less than 120 additions/subtractions

and 40 multiplications per time step on a grid point, as opposed to 80 additions/subtractions and 40 mul-

tiplications for the LBGK scheme with the same optimization e�ort. (The purpose of this counting is not

to �nd the exact lower bounds, but only to have an estimate.) We would also like to stress that on modern

computers the computational performance of lattice Boltzmann schemes is mostly limited by the available

memory bandwidth and that rather soon the cost of local 
oating-point operations will be negligible. For

instance, combining the collision and propagation steps into one loop would reduce about 1=3 of the time,

because use of two loops doubles the memory access time. (However, this combination of loops is di�cult to

implement on vector machines.) With the optimization except the combination of collision and propagation

together, the number of sites updated per second of the RLBE D3Q15 scheme for our test carried out on one

node (8 processors) of a Hitachi SR-8000 parallel vector machine is about 1:76 � 107 as opposed to 2:06 � 107
for the LBGK D3Q15 scheme: the RLBE scheme is about 17% slower than the LBGK counterpart. The

achieved FLOPS rate is 3.18 GFLOPS for the RLBE scheme versus 2.70 GFLOPS for the LBGK scheme.

However it is important to note that, with the same computational e�ort and near the limit of numerical

stability, the results obtained by using the RLBE scheme is much more accurate than the results obtained

by using the LBGK scheme which are contaminated by numerical instability.

Free of the parity invariance, the D3Q19 RLBE model (see Appendix) further improves the stability.

We have tested the D3Q19 RLBE model in the Povitsky cavity 
ow [28]. We used the `link' bounce-back

boundary conditions for the �ve walls and the correct boundary condition of equation (4.2) for the moving

lid. With the same resolution of 513, the results obtained by using the D3Q19 RLBE model are much more

accurate than that obtained by using the D3Q15 RLBE model with di�erent boundary conditions. This

con�rms the previous observation that the D3Q19 LBGK model is more stable than the D3Q15 LBGK

model [27]. A further comparative study of these two RLBE models is left for future work.

5. Conclusions. In this paper we provide a synopsis of the multiple-relaxation-time LBE in three

dimensions and demonstrate its superior numerical stability and e�ciency through the simulation of the

9



diagonally lid-driven cavity 
ow in three dimensions. The 
ow is geometrically simple, steady, and yet

non-trivial. For this 
ow we estimate that the improvement in stability brought by the RLBE scheme

yields an about four-fold gain in maximum Reynolds number when compared to the LBGK scheme. Of

course, this improvement would be 
ow and boundary and initial condition dependent. Given that the

computational e�ort required to solve time-dependent 
ows in three dimensions is basically proportional to

Re3, the stability improvement by using the RLBE scheme would reduce the computational e�ort by at least

one order of magnitude while maintaining the accuracy of the simulations.
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Appendix A. Multiple-relaxation-time D3Q19 model.

The nineteen discrete velocities in D3Q19 models are:

e� =

8><>:
(0; 0; 0); � = 0;

(�1; 0; 0); (0; �1; 0); (0; 0; �1); � = 1; 2; : : : ; 6;

(�1; �1; 0); (�1; 0; �1); (0; �1; �1); � = 7; 8; : : : ; 18;

(A.1)

and the components of the nineteen orthogonal basis vectors are given by

j�0i� = ke�k0 = 1;

j�1i� = 19ke�k2 � 30;

j�2i� = (21ke�k4 � 53ke�k2 + 24)=2;

9>=>; (A.2a)

j�3i� = e�x;

j�5i� = e�y;

j�7i� = e�z;

9>=>; (A.2b)

j�4i� = (5ke�k2 � 9)e�x;

j�6i� = (5ke�k2 � 9)e�y;

j�8i� = (5ke�k2 � 9)e�z;

9>=>; (A.2c)

j�9i� = 3e2�x � ke�k2;
j�11i� = e2�y � e2�z;

)
(A.2d)

j�13i� = e�xe�y;

j�14i� = e�ye�z;

j�15i� = e�xe�z;

9>=>; (A.2e)

j�10i� = (3ke�k2 � 5) (3e2�x � ke�k2);
j�12i� = (3ke�k2 � 5) (e2�y � e2�z);

)
(A.2f)

j�16i� = (e2�y � e2�z)e�x;

j�17i� = (e2�z � e2�x)e�y;

j�18i� = (e2�x � e2�y)e�z ;

9>=>; (A.2g)

where � 2 f0; 1; : : : ; 18g. The corresponding nineteen moments fm�j� = 0; 1; : : : ; 18g are arranged in the

following order:

jmi = (�; e; �; jx; qx; jy; qy; jz; qz; 3pxx; 3�xx; pww; �ww; pxy; pyz; pxz;mx;my;mz)
T:

10



There are fourteen vectors in the orthogonal basis set fj��ig with the same physical signi�cance of the basis

vectors in the D3Q15 model except for j�14i. These fourteen vectors correspond to the following moments:

�, e, �, j, q, and pij . In the D3Q19 basis set fj��ig there is no vector corresponding to the moment mxyz of

equation (3.2f). Instead, there are �ve vectors which are not in the D3Q15 basis set: three vectors of cubic

order (j�16i, j�17i, and j�18i) and two of quartic order (j�10i and j�12i). These �ve vectors are polynomials
in j�3i, j�5i, and j�7i. The two vectors of quartic order, j�10i and �12i, have the same symmetry as the

diagonal part of the traceless tensor pij , while other three vectors of cubic order are parts of a third rank

tensor, with the symmetry of jkpnm.

The diagonal collision matrix bS is

bS � diag(0; s1; s2; 0; s4; 0; s4; 0; s4; s9; s10; s9; s10; s13; s13; s13; s16; s16; s16);

and the transformation matrix M is given at the end of this appendix. Again, the 4th, 6th, and 8th row

vectors of M (corresponding to jx, jy, and jz , respectively) uniquely de�ne the ordering (or labelling) of the

velocity set fe�g with respect to subscript �.

With c2s = 1=3 and s9 = s13, the equilibria of the non-conserved moments are given as functions up to

second-order in � and j as follows:

e(eq) = �11�+ 19

�0
j � j = �11�+ 19

�0
(j2x + j2y + j2z ); (A.3a)

�(eq) = w� �+
w�j

�0
j � j; (A.3b)

q(eq)x = �2

3
jx; q(eq)y = �2

3
jy; q(eq)z = �2

3
jz ; (A.3c)

p(eq)xx =
1

3�0

�
2j2x � (j2y + j2z )

�
; p(eq)ww =

1

�0

�
j2y � j2z

�
; (A.3d)

p(eq)xy =
1

�0
jxjy; p(eq)yz =

1

�0
jyjz; p(eq)xz =

1

�0
jxjz ; (A.3e)

�(eq)xx = wxxp
(eq)
xx ; �(eq)ww = wxxp

(eq)
ww ; (A.3f)

m(eq)
x = m(eq)

y = m(eq)
z = 0; (A.3g)

where w� and w�j are again free parameters and wxx is an additional free parameter in the D3Q19 model.

The bulk viscosity � of the D3Q19 model is equal to that of the D3Q15 model given in equation (3.6b)

and its kinematic viscosity � is

� =
1

3

�
1

s9
� 1

2

�
=

1

3

�
1

s13
� 1

2

�
: (A.4)

To recover the corresponding LBGK model, one must set w� = 3, w�j = �11=2, and wxx = �1=2.
However, to attain an optimized stability of the model, we obtained the following parameter values through

linear analysis (Lallemand & Luo 2000): w� = 0, w�j = �475=63, wxx = 0, s1 = 1:19, s2 = s10 = 1:4,

s4 = 1:2, and s16 = 1:98. With the above parameter values, we can use a maximum speed of 0:19 (Mach

number M � 0:33) and a viscosity � > 2:54 �10�3 in simulations. The linear analysis to obtain these `optimal'
parameter values is a local analysis of a system with a uniform velocity of wave-vector k. The local analysis

does not consider boundary conditions and therefore the system may be less stable in actual simulations.
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The transformation matrix M is given by

M =

�����������������������������������������������

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

�30 �11 �11 �11 �11 �11 �11 8 8 8 8 8 8 8 8 8 8 8 8

12 �4 �4 �4 �4 �4 �4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 �1 0 0 0 0 1 �1 1 �1 1 �1 1 �1 0 0 0 0

0 �4 4 0 0 0 0 1 �1 1 �1 1 �1 1 �1 0 0 0 0

0 0 0 1 �1 0 0 1 1 �1 �1 0 0 0 0 1 �1 1 �1

0 0 0 �4 4 0 0 1 1 �1 �1 0 0 0 0 1 �1 1 �1

0 0 0 0 0 1 �1 0 0 0 0 1 1 �1 �1 1 1 �1 �1

0 0 0 0 0 �4 4 0 0 0 0 1 1 �1 �1 1 1 �1 �1

0 2 2 �1 �1 �1 �1 1 1 1 1 1 1 1 1 �2 �2 �2 �2

0 �4 �4 2 2 2 2 1 1 1 1 1 1 1 1 �2 �2 �2 �2

0 0 0 1 1 �1 �1 1 1 1 1 �1 �1 �1 �1 0 0 0 0

0 0 0 �2 �2 2 2 1 1 1 1 �1 �1 �1 �1 0 0 0 0

0 0 0 0 0 0 0 1 �1 �1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 �1 �1 1

0 0 0 0 0 0 0 0 0 0 0 1 �1 �1 1 0 0 0 0

0 0 0 0 0 0 0 1 �1 1 �1 �1 1 �1 1 0 0 0 0

0 0 0 0 0 0 0 �1 �1 1 1 0 0 0 0 1 �1 1 �1

0 0 0 0 0 0 0 0 0 0 0 1 1 �1 �1 �1 �1 1 1

�����������������������������������������������

: (A.5)
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